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• PERSPECTIVE 

Extracellular vesicles and viruses: Are they 
close relatives? 
Esther Nolte-'t Hoena, Tom Cremera, Robert C. Gallobl, and Leonid B. Margolis' 

Edited by Peter K. Vogt, The Scripps Research Institute, La Jolla, CA, and approved June 27, 2016 (received for review April 4, 2016) 

Extracellular vesides (EVs) released by various cells are small phospholipid membrane-enclosed entities that can 
carry miRNA. They are now central to research in many fields of biology because they seem to constitute a new 
system of cell-cell communication. Physical and chemical characteristics of many EVs, as well as their biogenesis 
pathways, resemble those of retroviruses. Moreover, EVs generated by virus-infected cells can incorporate viral 
proteins and fragments of viral RNA, being thus indistinguishable from defective (noninfectious) retroviruses. 
EVs, depending on the proteins and genetic material incorporated in them, play a significant role in viral 
infection, both facilitating and suppressing it. Deciphering the mechanisms of EV-cell interactions may facilitate 
the design of EVs that inhibit viral infection and can be used as vehicles for targeted drug delivery. 
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The earth hath bubbles as the water has.. . 
William Shakespeare, Macbeth 

Act I, Scene 3 

Cells in vivo and ex vivo release membrane vesicles. 

These extracellular vesicles (EVs) are 50- to 100-nm-

sized lipid bilayer-enclosed entities containing proteins 

and RNA. Not long ago, EVs were considered to be 

"cellular dust" or garbage and did not attract much 

attention. However, it has recently been found that 

EVs can have important biological functions and that 

in both structural and functional aspects they resemble 

viruses. This resemblance becomes even more evident 

with EVs produced by cells productively infected with 

viruses. Such EVs contain viral proteins and parts of viral 

genetic material. In this article, we emphasize the simi-

larity between EVs and viruses, in particular retroviruses. 

Moreover, we emphasize that in the specific case of 

virus-infected cells, it is almost impossible to distinguish 

EVs from (noninfectious) viruses and to separate them. 
Let us start with definitions. Although EVs were 

discovered decades ago, EV research emerged as a 
separate field relatively recently and currently lacks 
sufficient practical nomenclature. In full analogy with 
viral biogenesis, some of these vesicles are generated 
inside cells and on release into the extracellular milieu 
are called "exosomes," whereas others pinch off from  

the plasma membrane and are generally referred to as 
"microvesides" (1). Most commonly, the general term 

EVs is used to refer to any membrane vesicle of a type 

that is released into the extracellular space. However, 

use of this general term not only masks the fact that EVs 

are highly heterogeneous in size, structure, and biogen-

esis but may also lead to apparent controversies when 

different studies deal with different entities but call 

them by the same name. The diversity of EVs may also 

underlie the large variety of roles ascribed to them in 

normal cell function and in pathologies (2). 
In contrast to EVs, the definition of viruses developed 

by 20th century virologists was quite precise: both the 

Encyclopedia Brttannica and the Oxford English Dictio-

nary define virus as "an infectious agent of small size that 

can multiply only in living cells." EVs do not fall under this 

definition, because despite their resemblance to viruses in 

many aspects, they are fundamentally different, as they do 

not replicate. However, contemporary virology has dis-

tanced itself from this strict definition of virus by its wide 

use of the terms noninfectious and defective virus. There-

fore, EVs generated by retrovinis-infected cells that carry 

viral proteins and even fragments of viral genomes essen-

tially fall under the definition of noninfectious viruses. 
Based on current knowledge, there are many 

aspects in which EVs resemble viruses, in particular 
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retroviruses. First, although some EVs may be up to a micrometer in 
size, the majority of EVs are <300 rim, the size of a typical RNA 

virus. Like enveloped viruses, EVs are surrounded by a lipid 
membrane that also contains cell membrane proteins. Like many 
viruses, EVs are formed in the endosomal system or at the 
plasma membrane via defined biogenesis pathways, for exam-
ple, involving the endosomal sorting complexes required for 
transport (ESCRT) machinery (1). Like viruses, EVs can bind to 
the plasma membranes of other cells, enter them either through 
fusion or endocytosis, and trigger specific reactions from these 

recipient cells (1). Finally, EVs carry genetic material, and this 
genetic material can change functions of the recipient cells (2, 3). 
Especially in the case of retroviruses, EVs generated in infected cells 
contain selected molecules of viral origin (4) and can be so similar to 
noninfectious defective viruses that have lost their ability to repli-
cate that the difference between them becomes blurred. In other 
cases, EVs provide an "envelope" to nonenveloped viruses, e.g., 
hepatitis A, and these EV-encapsulated viruses can infect cells (5). 
Similarly, EV released by hepatitis C-infected cells can carry fully 
infectious viral genomes that in target cells generate new infectious 

viral particles (6). 
In this Perspective, we suggest that in retrovirus infections a variety 

of diverse vesides is released, such that on one extreme there are EVs 
consisting entirely of host cell components and on the other 
replication-capable viruses. In between these extremes are nonrep-
licating particles that can be considered both as defective viruses and 
as EVs containing various amounts of virus-specific molecules (Fig. 1). 

Obviously, unlike true viruses, EVs that contain viral proteins 
and fragments of viral genomes do not cause outbreaks and 
epidemics. However, EVs can either directly interact with retro-

viruses or modulate host cells, thereby affecting the infection. 
Studies on other virus infections in which EVs were shown to affect 
antiviral immune responses [e.g., human herpesviruses, in partic-
ular Epstein-Barr virus (EBV)) or in which EVs were shown to entrap 

nonenveloped viruses (like hepatitis A virus and hepatitis E virus) 

have been reviewed elsewhere (7, 8). 

Fig. 1. Structural similarities between EVs and virions. Cells infected 
with enveloped RNA (retro)viruses release vesides containing a 
variety of host and viral factors. On one extreme, there are EVs 
consisting entirely of host cell components (blue), and on the other 
extreme there are infectious viruses surrounded by a host lipid 

bilayer and containing all of the virus-specific molecules (red) 
necessary for infectivity. In virus-infected cells, EVs incorporate 
fragments of the viral genome and viral (glyco)proteins. Moreover, 
virus infections modify the incorporation of host proteins and RNAs 
into EVs (light blue). Such infection-induced EVs and the so-called 
defective viruses and virus-like partides are intermediate entities, 
and the border between them seems not to exist. 

EVs and Viruses Cross Paths in Biogenesis 

Early discussions on relationships between EVs and viruses (9, 10) 
were largely based on the fact that both EVs and retroviruses use 

the cellular vesiculation machinery, which explained striking sim-
ilarities between EVs and retroviruses in lipid composition (high 
cholesterol and glycosphingolipids) and protein content (tetra-
spanins, GPI proteins, and cytoplasmic proteins). Moreover, it was 
hypothesized that retroviruses exploit preexisting pathways for 
intracellular vesicle trafficking (The Trojan exosome hypothesis) (9) 
and could be regarded as "modified or mutated exosomes." 
Others disputed the idea, because in contrast to retroviruses, 

there was little evidence for an active role of EVs in functional 
modification of target cells via transport of bioactive proteins, 
lipids, and genetic material (10). Later, it was found that EVs do 

contain genetic material, mainly in the form of small RNAs 
(3,11,12). Besides the involvement of molecular mechanisms for 
sorting of specific proteins into EVs (13), numerous studies also 
indicate that the RNA content of EVs doesn't simply reflect the 

RNA content of the EV-producing cell. Although some RNAs may 
passively diffuse into EVs in the course of their biogenesis, active 

sorting of specific RNAs has been shown to depend on defined RNA-
binding proteins (14). Moreover, EV-associated miRNAs and mRNAs 
have been found to be enriched in certain sorting motifs (14-16). 

Recent scientific breakthroughs have shown that EV-associated 
proteins, lipids, and genetic material can be functionally transferred 
to target cells (13, 17-19), strongly implying that EVs and (retro) 
viruses have in common not only structural but also some functional 
aspects. This similarity is a reflection of the similarity in biogenesis of 

EVs and viruses (Fig. 2). 

"Mister Postman": What Do EVs and Viruses Deliver 

Published data indicate that EVs share with viruses an important 
function that played a critical role in evolution, namely delivering 

bioactive material from one cell to another 	8, 20, 21). Specific 

combinations of lipids and proteins, in particular, tetraspanins (22), 
in the EV membrane can mediate specific targeting of vesicles to 

recipient cells and may determine the ability of vesicles to fuse with 
cellular membranes. These molecules, as well as genetic material 
and proteins enclosed in EVs (e.g., transcription factors and cyto-
kines), constitute molecular signals that can affect the function of 
recipient cells. It is exactly this trait of being multicomponent 
transport units that EVs share with enveloped viruses. Below, we 
discuss further characteristics shared by EVs and viruses. 

As suggested from the above, like viral envelope proteins, EV 

surface proteins can determine adhesion to the plasma membrane 
of specific target cells. The intercellular adhesion molecule 1 (ICAM 1), 
present in dendritic cell (DC)-derived EVs, for example, mediates EV 
recruitment by other DCs and activated T cells (23, 24). Interestingly, 
the combination of integrin proteins on tumor cell EVs was recently 
shown to determine their delivery to specific target organs, where 
these EVs prepare the site of metastasis (25). A number of cellular 
proteins are incorporated both in EVs and in virions. Tetraspanins, 
for example, are acsnciated with EVs and have also been reported 
to be incorporated into retroviruses, in which these host proteins 
can play a role in infectivity (26). Other EV membrane proteins can 
act as ligands for receptors on the target cell plasma membrane. 
MHC class II—peptide complexes on DC-derived EVs, for example, 
can bind or target T-cell receptors (27). Besides proteins associated 

with the EV surface, lipids too can mediate signaling to target cells. 
Examples of EV-associated bioactive lipids include prostaglandin 
E2, which can play a role in tumor evasion and immune suppression, 
and lysophosohatidylcholine, which also affects membrane fusion 
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Fig. 2. Similarities between biogenesis of EVs and virions. EVs and enveloped retrovirus particles (e.g., HIV) are simultaneously released by 

infected cells and share pathways for biogenesis at the plasma membrane or at mukivesicular bodies (MVBs). For example, proteins of the ESCRT 

complex and tetraspanins are involved in both virion and EV formation. Viral RNA (red) enters the cytoplasm, after which Gag-mediated virion 
assembly takes place in the MVB or at the plasma membrane. MVB can contain both virions and EVs and are released from the cell after fusion of 
the MVB with the plasma membrane through the action of Rab, SNARE, and SNAP proteins. Defective viruses are also formed but are 
noninfectious because of the lack of essential viral components. Whereas specific host proteins and RNAs (blue), such as CD63 and APOBEC3G, 
can be incorporated into virions, viral components (red) are also incorporated in the plethora of EV types released by the cells. These include 
fragments of the viral genome, viral miRNAs, and viral (glyco)proteins, such as Nef and Gag. This intertwining of their pathways for biogenesis 

blurs the distinction between virions and EVs. 

and induces immune cell activation and chemotaxis (28, 29). EV 

surface proteins and lipids may also determine the ability of vesicles 

to fuse with cellular membranes, as they do in the case of viruses 

(30). Fusion of EVs with target cells allows EV-entrapped signaling 

molecules to exert effects on target cell functioning. These mole-

cules include cytosolic proteins such as transcription factors and also 

cytokines such as IL-1p that lack an N-terminal signal peptide and 

that are released via alternative secretion routes (31). Moreover, EVs 

can carry specific enzymes, such as metalloproteinases and leuko-

triene-synthesis enzymes (32). Interestingly, DNA polymerase can 

also be transported by EVs. Whereas early studies reported the as-

sociation of a DNA polymerase that catalyzed ribonuclease-sensitive 

DNA synthesis (thus resembling viral reverse transcriptase but 

not proving its identity) with particulate structures in the cyto-

plasm (27), more recent data show that tumor EVs can display 

endogenous reverse transcriptase activity (28). This suggests 

that under certain conditions, reverse transcriptase can be in-

corporated into EVs. 
Some data indicate that EVs, although less effectively than 

virions themselves, can transfer cytosolic proteins involved in 

antiviral responses, such as APOBEC3G and cGAMP (33-36), to 

recipient cells. However, the relative efficiency of virions and EVs 

in transferring these proteins may be dependent on cell type and 

environmental conditions. 

In some cases, EVs can also deliver genetic material into target 

cells. After the initial discovery that EVs carry protein-encoding 

mRNAs and small noncoding RNAs involved in regulation of gene 

expression [microRNA (miRNA)] (3), several groups demonstrated 

alterations in target cell gene expression due to the transfer of 

such RNAs via EVs (2). Besides miRNAs, EVs also contain a large 

variety of other small noncoding RNAs, such as fragments of 

protein-coding regions and repeat sequences, which could also 

act as regulatory RNAs by influencing gene expression (11). Al-

though the most of genetic material enclosed in virions encodes 

for viral proteins that are essential for virus replication, viruses and 

EVs unite in their capacity to transfer RNAs that can trigger path-

ogen recognition receptors (PRRs) in target cells. Fragments of 

the viral genome, as well as virus-encoded small RNAs, such as 

those encoded by EBV, and certain host cell miRNAs, have been 

shown to trigger target cell PRRs. Although triggering of the PRR 

system results in complex responses, in some cases it may in-

duce an increased activation status of these cells (37-39). Most 

of the described EV-mediated effects on the function of other 

cells are restricted to in vitro systems or occur within the same or-

ganism. Whereas viruses transfer between organisms as well as 

from cell to cell within an organism, the functional transfer of EVs 

from one individual to the other, as has been suggested for semen-

or mother's milk-derived EVs, has not been proven (12). 
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Mission (Almost) Impossible: Separation of Virions from EVs 
Because EVs are produced by virtually all cells, probably every viral 

preparation is in fact a mixture of vinons and EVs. To study their re-

spective functions, it is necessary to separate EVs and vinons. This is 
very difficult with some viruses, such as retroviruses, because both EVs 
and retroviruses are comparable in size (EVs ranging from 50 to 100 nm, 
virions being -100 rim) and buoyant density (EVs: 1.13-1.18 g/L; 
most retroviruses: 1.16-1.18 g/L). Other membrane-derived materials 
may also have similar characteristics. Therefore, density gradients, 
which are often used to separate EVs from contaminating protein 
aggregates on the basis of differences in buoyant densities (40), are 
not always reliable for separation of EVs from viral partides. Similar 
technical hurdles were also experienced at the early stages of retro-
virus research, when there were long-lasting disagreements and 
controversies regarding replication-incompetent oncoviral partides 

causing cancer and their dependence on competent helper viruses 

for propagation (41). In those early days, electron microscopists 
observed that uttracentrifuged viruses copelleted with other 100-nm-
sized membrane-enclosed particles. In the case of mouse eryth-
roleukemia, pseudorabies, and polio virus these particles were 
termed "defective interfering partides" (42). Such partides were 

found to be functionally active, e.g., in repressing virus infection or 
oncogenic transformation (43), and would nowadays perhaps be 
dassified as "virus-induced EVs." At this time, it was discovered that 
these noninfectious viruses could be separated from their infectious 
counterparts (helper virus) on the basis of their slower migration in 

density gradients (42). Interestingly, a similar method has more re-
cently been reported for separation of EVs from HIV vinons that are 
produced in HEK 293 T cells or present in the plasma of HIV-1--
positive individuals (44, 45). Virus particles and EVs were separated on 
the basis of migration in velocity gradients and distinguished on the 
basis of the presence of p24 in virus particles and, for example, 
acetylcholinesterase and CD45 in EVs but not in HIV. Although it has 
been reported that in contrast to EVs, HIV particles do not incorporate 
CD45 (46) or acetylcholinesterase (44), it is not clear if this is universal, 

and of course, these markers may not be carried by all of EVs. The very 

criteria for purity of the isolated preparations become murky with the 
realization that the border between retrovirus virions, like HIV, and EVs 

is blurry (Fig. 1). This is obviously different in the case of EV-enclosed 

nonenveloped viruses, such as hepatitis A, which can be distinguished 
from nonenveloped virions using neutralizing antibodies. This ap-

proach cannot be applied to enveloped viruses, because viral enve-
lope proteins to which neutralizing antibodies are formed can be 
incorporated into EVs. Unless more specifically defined, it is currently 
virtually impossible to specifically separate and identify EVs that carry 
viral proteins, host proteins, and viral genomic elements from envel-
oped viral particles that carry the same molecules. Nevertheless, high-
throughput methods to analyze individual nano-sized partides may 

facilitate discrimination of different particles in the EV-virus continuum 
in the future. For example, recent developments in flow cytometry-
based techniques have opened up the possibility to quantify and 
characterize particles 50-200 nm in size. Such developments indude 
not only hardware adaptations in high-end flow cytometers to im-
prove signal-to-noise ratios, but also optimized staining protocols for 
general labeling of EVs and the use of magnetic nanoparticles to 
screen the surface antigenic composition of EVs (47, 48). 

To Be or Not to Be Infected: EVs in Pro- and Antiviral 
Strategies 
In vivo, EVs can interact with viruses and with each other either 
directly or via modulation of host responses, thus participating in a 
"War and Peace" between viruses and host (49, 50). Some viruses 

induce the infected cells to release modified EVs that facilitate in-
fection by increasing the pool of susceptible target cells (e.g., by 
increasing the number of activated cells) or their susceptibility to 

viral infection or by serving as decoys that absorb antiviral anti-
bodies, thereby compromising antiviral immunity. In contrast, EVs 
carrying viral proteins can also be beneficial to the host, for ex-

ample, by providing dendritic cells with viral antigens to facilitate 
the initiation of adaptive immune responses. Hypothetically, the 
capacity of EVs to regulate the lifespan of permissive cells and to 
modify antiviral immune responses may give additional flexibility to 
the host in responding to viral infection. Thus, EVs formed during 
viral infection may play either pro- or counter-viral roles (Fig. 3). It is 
currently unknown whether the diverse functions ascribed to virus-
induced EV may in part be explained by differences in the purity of 

EV populations used in various studies. A general understanding of 
parameters that determine the net effect of EVs on viral infections is 

therefore still lacking. 

EVs Facilitate Viral Infection. Several HIV proteins and RNAs have 

been detected in EVs released from HIV-infected cells. One of the 
viral components released via EVs is the HIV transactivation re-
sponse element (TAR) RNA (51). TAR is an RNA stem-loop structure 
located at the 5' ends of HIV-1 transcripts, which in infected cells 
can be bound by Tat, thereby facilitating recruitment of elongation 
factors and increased production of viral RNA (52). When trans-
ferred via EVs, TAR RNA can increase the population of susceptible 

target cells. Inside EV-targeted cells, the full-length TAR RNA is 
processed into miRNAs, which silence mRNA coding for Bcl-2 
Interacting Protein. The consequent increase in resistance to apo-

ptosis allows the cell to produce virus for a longer period, thereby 

facilitating HIV infection (51). 
In addition, EVs released by HIV-infected cells selectively in-

corporate the HIV virulence factor Nef via interaction of the Nef 
secretion modification region with mortalin, a member of the 
Hsp70 family of chaperones involved in cellular protein trafficking 

(53). Delivery of the EV-associated Nef to T cells affects these cells 
in several ways. First, the transferred Nef may activate T cells, ren-
dering them more susceptible to HIV infection (54). Second, EVs 

can deliver Nef to some of the bystander CD4* T cells and induce 
cell senescence or death (55). This mechanism can contribute to the 
high level of T-cell deaths during the early stages of HIV infection, 

when viral load is still low (55). Finally, intercellular transfer of Nef by 
EVs may facilitate evasion of the humoral immune response by 
suppressing IgG2 and IgA production in B cells, as has also been 
shown for Nef transfer by HIV-infected macrophages to B cells via 
intercellular conduits (56). In in vitro systems, it has been shown that 
EVs can transfer the HIV coreceptors CCR5 and CXCR4 to other 
cells, thus making them prone to HIV infection (57, 58). This EV-
mediated process may expand the spectra of HIV-infected cells, but 

it is yet unknown whether such a phenomenon plays an important 

role in vivo. 

EVs Suppress Viral Infection. In in vitro experiments, it has been 

shown that T cells can produce EVs containing the HIV receptor 
CD4. These EVs can attach to viral particles, thereby decreasing the 
numbers of virions that would otherwise infect CD4+ T cells (59). 
However, HIV can counteract this by stimulating the incorporation 
of HIV-Nef into these EVs, leading to the inhibition of CD4 in-
corporation in EVs and a decreased effectiveness of the above-

described host antiviral response (59). 
Another EV-mediated host cell protection mechanism against 

HIV involves the EV-mediated transport of the host antiviral protein 
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Fig. 3. Proviral and antiviral effects of EVs released by retrovirus-infected cells. Retrovirus infection can lead to the release of modified EVs that 
either facilitate or suppress infection. Potential antiviral effects indude (A) EV-mediated delivery of antiviral components, such as APOBEC3G, to 
increase resistance to infection; (B) spread of TLR ligands, such as viral RNA, via EVs to warn nonsusceptible neighboring cells of the presence of 
viral infection; and (C) provision of antigen presenting cells with viral antigen to facilitate the initiation of adaptive immune responses. Potential 
proviral effects include (D) inhibition of the neutralizing effect of EV, leading to decreased binding of EV to virions and an increase in the number 
of virions that may infect other cells; (E) EV-mediated delivery of viral components (e.g., Nef) that induce induce cell senescence or death of 
antiviral immune cells; (F) EV-mediated delivery of viral components that suppress the function of immune cells (e.g., Nef-induced down-
regulation of antibody production by B cells); and (G) increase of the pool of virus-susceptible cells, e.g., by transference of coreceptors for virus 
binding to other cells. 

APOBEC3G. This cytidine deaminase is usually incorporated into 

virions together with retroviral RNA and inhibits viral replication by 

creating G-to-A mutations in the transcribed viral DNA (60). The 

antiviral action of APOBEC3G is counteracted by the HIV-encoded 

protein Vif, which interferes with APOBEG3G incorporation into 

virions. Delivery of APOBEC3G without Vif via EVs can counteract 

the effect of Vif and thus increase resistance of EV-targeted cells to 

HIV infection (34). Similarly, recent data indicate that the second 

messenger cyclic guanosine monophosphate-adenosine mono-

phosphate (cGAMP) (induced by cGAMP synthase) is enclosed 

both in HIV particles and in EVs that are released from infected 

cells. Intercellular transfer of cGAMP, although accomplished 

more efficiently by viruses than by EV, triggers antiviral IFN re-

sponses in newly infected cells in a stimulator of interferon genes 

(STING)-dependent manner (35, 36). 

EVs from virus-infected cells not only contain endogenous (mi) 

RNAs but have also been shown to be selectively enriched in viral 

RNAs (e.g., in the case of HCV-induced EVs) (38). The PRRs in EV-

targeted cells may recognize such RNAs as pathogen-associated 

molecular patterns (PAMPs) and respond by triggering the innate 

antiviral response (38, 61). HIV-infected macrophages also release 

EV containing viral RNAs (viral miRNAs vmiR88 and -99) that trigger 

endosomal TLR8 and NF-KB signaling in EV-targeted bystander 

macrophages (61). The subsequent production of proinflammatory 

cytokines (e.g., TNFa) contributes to the initiation of the immune 

response against HIV. Dissemination of viral RNA via EVs provides a 

strategy to warn nonsusceptible neighboring cells of the presence of 

viral infection. During HCV infection, for example, plasmacytoid DC  

are targeted by viral RNA containing EVs and, as a result, initiate an 

inflammatory response (38). In addition, EVs containing host miRNA 

produced by virus-resistant cells can confer resistance to other cells. 

This has been demonstrated for trophoblasts, which are largely re-

sistant to infection by various viruses, including HIV, probably con-

tributing to in vivo fetus protection. EVs produced by these cells 

in vitro carry host miRNAs and deliver them to virus-susceptible 

cells, making them resistant to virus infection (62). 

Conclusions: Prospects for EV Therapy 

A growing body of evidence indicates that cells infected with 

enveloped or nonenveloped viruses release EVs that contain viral 

components. Here, we aimed to create awareness that virus prep-

arations may never be pure but rather are contaminated with di-

verse subpopulations of EVs, and some of these EVs may be either 

indistinguishable from or very similar to so-called defective viruses. 

Because of their common biogenesis paths, viruses and EVs may be 

close relatives, although only the former can replicate in cells. Im-

portantly, EVs generated by infected cells are not neutral, as they 

can either facilitate virus propagation or enhance the antiviral re-

sponse. Understanding of the structure of EVs produced by in-

fected cells, determining their cargo, and deciphering the fine 

mechanisms by which they affect viral infection are required not 

only for basic virology but also for translation into therapy. Below, 

we present three examples of potential utilizations of EVs in im-

munotherapy, vaccine development, and drug delivery: 

(i) EVs with viral proteins can serve as decoys for antiviral 

antibodies by binding them, leaving infectious virions partially 
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undetected. Eliminating these EVs (e.g., with immunoadsorption 
based on their nonviral markers) may enhance antiviral immune re-
sponses. (ii) Understanding the roles of EVs in antiviral immune re-

actions may guide engineering of EVs that have strong antiviral 

properties. (iii) Knowledge of phenotypes and functions of EVs 

generated in response to viral inoculation can in the future be ap-
plied to improve virus vaccines by eliminating or adding defined 

subsets of EVs. 
Targeted drug delivery is one of the most important and 

unresolved problems in pharmacology. By contrast, viruses are 

highly targeted: in the course of evolution they have acquired 
high specificity toward their cellular targets by incorporating 
specific binding proteins. Incorporation of such viral proteins 
onto the EV membrane may facilitate EV-mediated delivery of 

drugs to specific cells (63). 
However, to achieve these goals several important ques-

tions need to be answered regarding the role of EVs in in-
tercellular communication in the steady state and during viral 

infections: 

i) What are the exact mechanisms by which EVs affect viral in-

fection at both cellular and systemic levels? 

ii) Can we use new technologies, some of which are described in 
this report, to obtain viral preparations free of contaminating EVs 
and, reciprocally, EV preparations produced by infected cells and 

free of contaminating viruses? Only after we can obtain clean 
populations, can question # 1 be addressed experimentally. 

iii) How can we predict either in vitro or in vivo net biological 

activity when viruses and EVs are mixed? 

iv) Can we obtain EVs with specific (viral) surface proteins to tar-

get vesicles to particular cells and organs? 

v) Can we efficiently scale up the production of EVs so that we 
have sufficient quantities to test their in vivo effects and even 

perform clinical trials in the future? 

vi) Can we design and engineer EVs that block newly evolving 
viruses? Can we, for example, use EVs to block Zika viral in-

fection developing in fetuses or to enhance antiviral activity to 

new influenza strains? 

Answers to these questions will show whether the newly emer-

gent field of extracellular vesicle research will become important for 

understanding fundamental mechanisms of virus infections and be 

translated into anti-viral therapeutic strategies. 
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