SCHOOL OF NATURAL SCIENCES AND MEDICINE
ILIA STATE UNIVERSITY

Direction:Astrophysics
Position:Professor





Andria Rogava was brn in 1965. In 1981 he graduated from Tbilisi First Experimental School (with golden medal). In 1986 he graduated from
Tbilisi State University with highh honors, specialization ‘Theoretical \ Physics’. In 1990 he obtained his PhD, with the thsis entitled ‘Physical processes in the inner region of black hole accretion disc’. For about 20 years he worked as a research scientist at Abastumani Astrophysical Observatory. He worked at the Abdus Salam International Centre fr Theoretical Physics as a visiting scientist in 1995-1996 (Plasma Group) and later on w an associate member of ICTP. He worked at CPA/KULeuven as a research fellow, senior research fellow and a visiting professor. He worked at the University of Turin And Turin Astronomical Observatory as a researcher. In 2002 he was a winner (together with J. Lominadze, G. Chagelishvili and R. Chanishvili) of the 2002 Georgian State Prize in the Science and Technology. He is a professor at Ilia State univeristy since 2009. He is a co-founder of The Institute for Theoretical Physics at this university. He is an author or a co-author of more than 70 scientific publications. As
an invited lecturer he lectured and is lecturing at Tbilisi State University and Free University of Georgia, KU Leuven (Belgium) and Universita degli
Studi di Torino (Italy). In 2002, 2004, 2007 and 2011 he was an organizer and one of the directors of International Schools and conferences
at Abdus Salam ICTP.

Scientific interests / research interests

  • High Energy Astrophysics
  • Physics of Astrophysical Flows
  • Relativistic Physics
  • Plasma Physics
  • Hydrodynamics
  • Philosophical Problems of Physics
  • Physics Education
  • Science Popularization

• Featured publications

  • Osmanov, Z.; Rogava, A.; Poedts, S. – Electrostatic ion perturbations in kinematically complex shear flows – New J. of Phys., 17, id 043019 (2015).
  • Gudavadze, I.; Osmanov, Z.; Rogava, A. – On the role of rotation in the outflows of the Crab pulsar – Int. J. Mod. Phys. D, 24, id 1550042 (2015).
  •  Osmanov, Z.; Rogava, A.; Poedts, S. – Self-heating in kinematically complex magnetohydrodynamic flows.- Phys. Plasmas 19, 012901, (2012).
  • Dalakishvili, G.; Rogava, A.; Lapenta, G.; Poedts, S. – Investigation of dynamics of self-similarly evolving magnetic clouds – Astron. Astrophys.
    526, id.A22 (2011).
  •  Rogava, A. D.; Osmanov, Z.; Poedts, S.m – Self-heating and its possible relationship to chromospheric heating in slowly rotating stars – MNRAS, 404, 224 (2010).
  •  Shapakidze, D.; Debosscher, A.; Rogava, A. D.; Poedts, S. – Consistent Self-Similar Magnetohydrodynamics Evolution of Coronal Transients – ApJ, 712, 565 (2010).
  •  Dalakishvili, G. T.; Rogava, A. D.; Berezhiani, V. I. – Role of radiation reaction forces in the dynamics of centrifugally accelerated particles – Phys. Rev. D., 76, 045003 (2007).
  • Rogava, A. D.; Gogoberidze, G.; Poedts, S. – Overreflection and Generation of Gravito-Alfvén Waves in Solar-Type Stars – ApJ, 664, 1221 (2007).
  •  Osmanov, Z.; Rogava, A. D. ; Bodo, G. – On the efficiency of particle acceleration by rotating magnetospheres in AGN – Astron. Astrophys., 470, 395 (2007).
  • Gogoberidze, G.; Rogava, A. D.; Poedts, S. – Quantifying Shear-induced Wave Transformations in the Solar Wind – ApJ, 664, 549 (2007).
  • Rogava, A. D.; Gogoberidze, G. – Linear coupling of acoustic and cyclotron waves in plasma flows – Phys. Plasmas, 12, 2303 (2005).
  • Rogava, A. D. – Are Astrophysical Shear Flows Able to Heat Themselves? – Astrophys. Space Sci., 293, 189 (2004).
  • Rogava, A. D.; Poedts, S.; Osmanov, Z. – Transient shear instability of differentially rotating and self-gravitating dusty plasma – Phys. Plasmas,
  • 1655 (2004).
  •  Rogava, A. D.; Bodo, G.; Massaglia, S.; Osmanov, Z. – Amplification of MHD waves in swirling astrophysical flows – Astron. Astrophys., 408, 401 (2003).
  •  Rogava, A. D.; Dalakishvili, G.; Osmanov, Z. – Centrifugally Driven Relativistic Dynamics on Curved Trajectories – Gen. Rel. Grav., 35, 1133 (2003).
  •  Rogava, A. D.; Mahajan, S. M.; Bodo, G.; Massaglia, S. – Swirling astrophysical flows – efficient amplifiers of Alfvén waves! – Astron. Astrophys., 399, 421 (2003).
  •  Osmanov, Z. N.; Machabeli, G. Z.; Rogava, A. D. – Electromagnetic waves in a rigidly rotating frame – Phys. Rev. A, 66, d2103 (2002).
  •  Poedts, S.; Rogava, A. D. – Does spiral galaxy IC 342 exhibit shear induced wave transformations?! – Astron. Astrophys., 385, 32 (2002).
  •  Bodo, G.; Poedts, S.; Rogava, A. D.; Rossi, P. – Spatial aspect of wave transformations in astrophysical flows – Astron. Astrophys., 374, 337 (2001).
  •  Poedts, S.; Khujadze, G. R.; Rogava, A. D. – Acoustic phenomena in electrostatic dusty plasma shear flows – Phys. Plasmas, 7, 3204 (2000).
  •  Rogava, A. D.; Poedts, S.; Mahajan, S. M. – Shear-driven wave oscillations in astrophysical flux tubes – Astron. Astrophys., 354, 749 (2000).
  •  Rogava, A. D.; Poedts, S.; Heirman, S. – Are galactic magnetohydrodynamic waves coupled? – MNRAS, 307, L31 (1999).
  •  Mahajan, S. M.; Rogava, A. D. – What Can the Kinematic Complexity of Astrophysical Shear Flows Lead To? – ApJ, 518, 814 (1999).
  • Poedts, S.; Rogava, A. D.; Mahajan, S. M. – Shear-flow-induced Wave Couplings In The Solar Wind – ApJ, 505, 369 (1998).
  •  Rogava, A. D.; Chagelishvili, G. D.; Mahajan, S. M. – Shear Langmuir vortex: An elementary mode of plasma collective behavior – Phys. Rev E, 57, 7103 (1998).
  •  Rogava, A. D.; Chagelishvili, G. D.; Berezhiani, V. I. – Velocity shear-induced effects on electrostatic ion perturbations – Phys. Plasmas, 4, 4201 (1997).
  •  Chagelishvili, G. D.; Khujadze, G. R.; Lominadze, J. G.; Rogava, A. D. – Acoustic waves in unbounded shear flows – Phys. Fluids, 9, 1955 (1997).
  • Mahajan, S. M.; Machabeli, G. Z.; Rogava, A. D. – Escaping Radio Emission From Pulsars: Possible Role of Velocity Shear – ApJ Lett., 479, 129 (1997).
  • Chagelishvili, G. D.; Rogava, A. D.; Tsiklauri, D. – Compressible hydromagnetic shear flows with anisotropic thermal pressure – Phys. Plasmas, 4, 1182 (1997).
  • Rogava, A. D.; Khujadze, G. R. – General-Relativistic Model of Magnetically Driven Jet – Gen. Rel.Grav., 29, 345 (1997).
  • Rogava, A. D.; Mahajan, S. M. – Coupling of sound and internal waves in shear flows – Phys. Rv. E, 55, 1185 (1997).
  •  Rogava, A. D.; Mahajan, S. M.; Berezhiani, V. I. – Velocity shear generated Alfvén waves in electron-positron plasmas – Phys. Plasmas, 3, 3545 (1996).
  • Chagelishvili, G. D.; Rogava, A. D.; Tsiklauri, D. G. – Effect of coupling and linear transformation of waves in shear flows – Phys. Rev. E, 53, 6028 (1996).
  •  Tsikarishvili, E. G.; Rogava, A. D.; Tsiklauri, D. G. – Relativistic, hot stellar winds with anisotropic pressure – ApJ, 439, 822 (1995).
  • Chagelishvili, G. D.; Rogava, A. D.; Segal, I. N. – Hydrodynamic stability of compressible plane Couette flow – Phys. Rev. E, 50, 4283 (1994).
  • Tsikarishvili, E. G.; Rogava, A. D. – Linear hydromagnetic waves in an ultrarelativistic, collisionless plasma with a pressure anisotropy – Phys. Rev. E, 50, 3050 (1994).
  • Machabeli, G. Z.; Rogava, A. D. – Centrifugal force: A gedanken experiment – Phys. Rev. A, 50, 98 (1994).
  • Rogava, A. D. – Viscous shear in general-relativistic astrophysical flows – Gen. Rel. Grav., 25, 1175 (1993)
  •  Tsikarishvili, E. G.; Lominadze, J. G.; Rogava, A. D.; Dzhavakhishvili, J. I. – General-relativistic hydrodynamics of a collisionless plasma in a strong magnetic field – Phys. Rev. A, 46, 1078 (1992).
  • Rogava, A. D. – General co-moving frames in stationary and axisymmetric metrics – Gen. Rel. Grav. 24, 617 (1992).
  •  Chagelishvili, G. D.; Lominadze, J. G.; Rogava, A. D. – Fast variation of Cygnus X-1 and related sources – ApJ, 347, 1100 (1989).

Current Courses

Course Catalog

I. Bachelor courses:
1.1. “Resolved and unresolved mysteries of sciences” (introductory).
1.2. “Puzzles of micro and macro physics”, (with Zurab Tavartkiladze)
(introductory).
1.3. “Mechanics”.
1.4. “Tensor Calculus”.
1.5. “Mathematical Methods of Exact Sciences”.
1.6. “Introduction to Scientific English”.

II. Master courses:

2.1. “Basics of Classic Astrophysics”
2.2. “Basics of Relastivistic Astrophysics”.
2.3. “Physics of Compact Objects”.